

LUA DEVICE DRIVER
PROGRAMMING
GUIDE

V1.0

1ST SEPTEMBER 2020

Ó2020, XILICA CORPORATION PAGE 2

LUA DEVICE DRIVER PROGRAMMING GUIDE

CONTENTS

CONTENTS 2

GENERAL OVERVIEW 4

DEVICE DRIVER OVERVIEW 4

Device Driver Types 4

Official Drivers 4

Custom Drivers 5

Components of a Device Driver 5

Driver Basic Information 5

Device Specific Parameters 5

Script Body 5

UI Control Panels 5

INSTALLING DEVICE DRIVERS 6

Official Drivers 6

Custom Drivers 6

LUA DEVICE DRIVER BUILDER 7

DEVICE DRIVER DEVELOPMENT 10

Driver Basic Information 10

Device Specific Parameters 12

Driver Lua Scripting 14

LuaDriverInitialization 16

LuaTCPServerConnectionCreatedCallback 17

LuaTCPServerConnectionClosedCallback 17

LuaTCPServerMessageReceivedCallback 17

LuaTCPClientMessageReceivedCallback 17

LuaUDPServerMessageReceivedCallback 18

LuaUIUpdatedCallback 18

LuaTimerCallback 18

XTCPServerSetup 18

XTCPServerClose 19

XTCPServerReplyMessage 19

XTCPClientSetup 19

XTCPClientClose 19

XTCPClientIsConnected 20

XTCPClientSendMessage 20

XUDPServerSetup 20

XUDPServerClose 20

XUDPClientSendMessage 21

XUIUpdateRequest 21

XStartTimer 21

XStopTimer 21

XConsoleLog 22

User Interface Builder 22

DRIVER TESTING AND DEBUGGING 23

DRIVER IMPORTING AND EXPORTING 26

PROJECT FILES AND DRIVERS 28

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 3

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 4

GENERAL OVERVIEW

The Lua Device Driver Builder software is integrated into Xilica Designer and provides a tool for equipment
manufacturers, system integrators, distributors, and end-users to build control interfaces within Xilica Designer for any
3rd party device with Ethernet control. This tool provides two major capabilities: communication protocol handling,
and control panel UI design and packaging. Drivers designed by manufacturers are available as an installable plug-in
to the Xilica Designer software and allows for drag & drop access to a given device’s controllable parameters.

The install package of a fully tested third-party developed driver may be made publicly available at www.xilica.com.

Installed drivers are shown in the Component Library of the Xilica Designer software. Double-clicking on the device
will download and install the driver, and it will then be available to drag & drop into a project. A double-click on the
device icon in the project window will reveal the module’s control interface. Elements from an interface can be
selected and dragged into an XTouch panel, XWP device, or Project Controller window.

In addition to official drivers, users can create their own local custom drivers, whether from scratch or by using an
existing driver as a starting point. Such custom drivers can be exported and made available for sharing as well.

DEVICE DRIVER OVERVIEW

Each device driver should be created for a specific make and model of hardware. Multiple instances of the same
driver can be utilized in a design and distinguished simply by assigning a unique IP address for each one.

Note: global variables within the script of a given module are specific to that instance of the module only and are not
accessible to other instances of the same module.

Varying instances of the same module may be uniquely customized with device-specific parameters. For example,
common parameters among multiple instances may be assigned unique device IDs.

Device Driver Types

Official Drivers

This type of driver is developed either by a third-party manufacturer or by Xilica, are officially supported and will be
made available to all Xilica Designer users. When new drivers are made available to the public, Xilica Designer will
detect the availability of new drivers during the application startup and will download the driver information
automatically. New drivers will be listed in the Component Library within Xilica Designer.

Note: once new drivers are detected, a message will prompt the user to restart Xilica Designer after which the new
driver will be made available for use.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 5

Custom Drivers

In addition to official drivers, users can define their own custom drivers, either by creating a new driver from scratch or
by using an existing driver as a starting point.

After a custom driver is developed, it can then be exported and then re-imported by other Xilica Designer users.

Components of a Device Driver

Each device driver contains the following four components:

Driver Basic Information

General information of a device driver such as name and description. Users can define what I/O points the device
driver will have. These defined I/O points are mainly for documentation purposes, (when dragged into the project
view, the device icon will include corresponding I/O points to document the wiring of the project). For Dante I/O
points, users may choose to setup Dante flows in the project view, and the corresponding Dante routing will be setup
automatically once online with the hardware.

Device Specific Parameters

As a single Driver definition can apply to multiple instances (multiple devices in the same project), each individual
device might have different information associated with it. One good example would be the Login ID and Password.
In order to properly handle different and potentially unique parameters of each individual instance of the same Driver,
we support the definition of Device Specific parameters.

Script Body

The Script Body consists of the actual Lua script programming code. Different callback functions will need to be
scripted so that when the driver starts, different callback functions will be called.

UI Control Panels

A drag and drop GUI builder (similar to XTouch panel interface design) enables the ability for develop the user
interface of a driver. Various UI objects can be placed in multiple interface pages. Each UI object is named and can be
accessed from the Lua script by name.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 6

INSTALLING DEVICE DRIVERS

Official Drivers

When a new Official driver is detected by the Xilica Designer software, it will first load in the driver’s basic information,
including the name and description. At this stage the drivers are listed in the Component Library but will be greyed
out to indicate that it is not yet installed. To install a driver, double-click it and it will automatically download and
install, providing the machine is connected to the Internet. Once downloaded and installed the driver can now be
brought into the project window.

In the following example, a double-clicking on “Generic PELCO-D PTZ Camera (Lua)” will download and install the
driver.

Custom Drivers

For user-defined Custom drivers (or drivers that have been imported), there is no need to re-install as they were
developed locally. These drivers will be automatically listed in the Component Library.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 7

In the following example, the “Custom Lua Driver” device is automatically installed and available.

LUA DEVICE DRIVER BUILDER

A Lua Device Driver Builder is integrated into the Xilica Designer software for programmers to create new drivers or
modify existing ones. To start the device driver builder, select the “Lua Device Driver Builder” -> “Lua Driver Builder
…” item from top menu bar. This will bring up the Lua Device Driver List Dialog.

Note: this option is only available when all projects are closed. You will need to save and exit any open projects
before you can access the Lua Device Driver Builder.

In this dialog, all drivers (Official or Custom) will be shown. If an Official driver has not yet been installed, you can click
on the “Install” button to download and install it. Installing the driver here is the same as installing it from the
Component Library by double-clicking.

For Official drivers, you have the following options:

• Install the driver (if not yet installed)

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 8

• Create a local copy of the driver. You can then modify the driver as desired.

Once you have created a local copy, this copy will be independent of the original driver. The original Official driver
will be unchanged.

To create a custom, local driver from scratch, click the “Create Custom Device Driver” button. This will create a new
driver with a default callback function available.

Note: if you are new to programming in Lua we recommend you make a copy from Official drivers to use as an
example and get familiar with the programming environment and syntax.

Once a custom driver is created, it will be listed in the dialog marked as “Custom” and the following options will be
available.

• Edit – edit/modify the driver
• Copy – create a copy from the driver
• Export – export the driver for another user to import into their Xilica Designer software.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 9

• Delete – delete the driver

Once you have decided to create or edit a driver, the builder editor will be displayed. It consists of 3 different tabs.

• “Lua Driver” tab: for basic driver information editing
• “Driver Script” tab: for editing the Lua scripts underlying the driver
• “Driver Control Interface” tab: for editing the user interface for the driver

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 10

Device Driver Development
The following describes the process of driver development for each of the four device driver components.

Driver Basic Information

The Driver ID is a unique ID generated by Xilica Designer. Users cannot modify the Driver ID. When a driver is
exported and re-imported to a different instance of Xilica Designer, the ID will be re-generated.

Device Name and Device Description will be checked for uniqueness within Xilica Designer’s detected drivers. If a
name conflict is found, it will suggest the next available name for you.

Most of the items listed in the Driver’s Basic Information are for documentation purposes, however the Manufacturer
and Device Type will be used to organize the driver in the Xilica Designer Component Library. In Component Library,
devices are categorized by manufacturer and then device type, and therefore the Manufacturer and Device Type
information controls where your drivers are located in the Library.

In the second section of this screen, users can select the number of analog input/output and number of Dante
input/output points for the driver. When the driver is dragged into the project view, the icon will contain the number
of I/O points that have been defined. Analog I/O it is for documentation purposes only. For Dante I/O, once defined,
the driver will be Dante enabled.

Note: For user-defined custom drivers, the following fields are used to determine its identity and
uniqueness:

• Driver Description
• Driver Manufacturer
• Author
• Creation Date

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 11

When deploying Dante-enabled drivers in a project, you will need to map it to the corresponding Dante device
available in your network (similar to other Dante enabled devices in Xilica Designer). You will also need to map the
control IP address for the device as shown below:

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 12

Device Specific Parameters

For each individual device, we can define parameters that will be passed to the driver during initialization. We support
4 different data types:

• Numeric
• Boolean
• String
• Binary

For each of these parameters, you can provide a default value, though these values can be overwritten when mapping
the driver to a physical device.

After these parameters are defined for a driver, mapping to a physical device (i.e. mapping its control to an IP
address) will bring up the mapping dialog. The mapping dialog displays the parameter list where these values can be
edited as needed for this particular device, as shown below:

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 13

Once the appropriate parameter values are entered and the project is loaded to hardware (online), the parameter
values will be passed to the Lua initialization script (LuaDriverInitialization). We will explain more about the
initialization function Section 8. The parameters are being passed to the initialization script as a table and you may
access individual elements by their respective name.

In the Lua script you can obtain the parameter value from the table “deviceParamTable”. The following example code
will explain how you can access different types of values from the table:

The result of this initialization script execution is shown below:

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 14

Driver Lua Scripting

For driver Lua scripting, each driver is required to implement specific call-back functions that will be executed under
different events of a driver. These types of events can be classified into the following categories:

Initialization

LuaDriverInitialization (drvierId, ip, deviceParamTable)

Network events

LuaTCPServerConnectionCreatedCallback (serverId, connectionId)
LuaTCPServerConnectionClosedCallback (serverId, connectionId)
LuaTCPServerMessageReceivedCallback (serverId, connectionId, receivedData)
LuaTCPClientMessageReceivedCallback (clientId, receivedData)
LuaUDPServerMessageReceivedCallback (serverId, reveivedData)

User Interface events

LuaUIUpdatedCallback (objectName, strData)

Timer events

LuaTimerCallback ()

The following functions are used to manage the network server, UI handling, and Timer handling.

Note that in all these calls, the first parameter is a “driverId”. This ID is a unique identifier to indicate which specific
instance the call should route to. This driver ID is the parameter being passed to the LuaInitialization function. All
subsequent function calls need to specify this ID to address the proper instance.

Note: We recommend defining the driverId as a global variable so all calls will reference this global variable.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 15

Network service

serverId XTCPServerSetup (driverId, serverPort, idleTimeout)
bool XTCPServerClose (driverId, serverId)
bool XTCPServerReplyMessage (driverId, serverId, clientId, sendData)
clientId XTCPClientSetup (driverId, remoteIP, remotePort, idleTimeout)
bool XTCPClientClose (driverId, clientId)
bool XTCPClientIsConnected (driverId, clientId)
bool XTCPClientSendMessage (driverId, clientId, sendData)
serverId XUDPServerSetup (driverId, serverPort)
bool XUDPServerClose (driverId, serverId)
bool XUDPClientSendMessage (driverId, remoteIP, remotePort, localPort, sendData)

User Interface service

bool XUIUpdateRequest (driverId, objectName, UIdata)

Timer Service

void XStartTimer (driverId, timeoutInterval)
void XStopTimer (driverId)

Console Log Service

void XConsoleLog (driverId, message)

In the “Driver Script” tab, there is an editor for all script function calls. When a new driver is created from scratch, the
sample function call signature will be provided as a starting point.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 16

For each new driver, the driver developer must implement a script for the following events:

LuaDriverInitialization

LuaDriverInitialization (drvierId, ip, deviceParamTable)
driverId Unique Global driver ID to identify the driver environment
ip IP address of this driver instance
deviceParamTable A table containing all user-entered device-specific parameters

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 17

This script will be called when a driver starts and will be called once and only once for each driver session. We
recommend using this initialization script to perform the following:

• Setting up all global variables, especially the unique driver ID, as this needs to be accessed throughout all
other script function calls.

• Accessing the device-specific parameter from the deviceParamTable. The value can be retrieved from the
table by accessing its array elements (e.g. to get the device username – deviceParamTable[UserName]
where UserName variables can be defined when you build the driver.

• Setting up communication sessions. i.e. TCP server setup, TCP client setup, UDP server setup.
• Setting up timers if you require periodic sending or polling of data from device.

LuaTCPServerConnectionCreatedCallback

LuaTCPServerConnectionCreatedCallback (serverId, connectionId)
serverId Indicates which server has an incoming TCP connection
connectionId A unique Id within the specific server

This script will be called when a previously setup server receives an incoming connection. Once a TCP session is
established, a unique connection ID will be used to identify this connection.

LuaTCPServerConnectionClosedCallback

LuaTCPServerConnectionClosedCallback (serverId, connectionId)
serverId Indicates which server has incoming TCP disconnected
ConnectionId Indicates which particular connection is closed

This script will be called when a TCP connection has been disconnected.

LuaTCPServerMessageReceivedCallback

LuaTCPServerMessageReceivedCallback (serverId, connectionId,receivedData)
serverId Indicates which server has an incoming message
connectionId Indicates which connection has an incoming message
reeviedData Message as string data in Lua

This script will be called when a previously setup server and specific connection session have received data. The
incoming string data can store binary data in Lua.

LuaTCPClientMessageReceivedCallback

LuaTCPClientMessageReceivedCallback (clientId, receivedData)
clientId Indicates which TCP client has an incoming message
reeviedData Message as string data in Lua

This script will be called when a previously setup TCP client connection has received data.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 18

LuaUDPServerMessageReceivedCallback

LuaUDPServerMessageReceivedCallback (serverId, reveivedData)
serverId Indicate which UDP server has incoming message
reeviedData Message as string data in Lua

This script will be called when a previously setup UDP server has incoming message received.

LuaUIUpdatedCallback

LuaUIUpdatedCallback (objectName, strData)
objectName Object name in ASCII format that has been updated
strData New data value in string format

This script will be called when a UI object value has been changed, e.g., a fader has been moved. User should obtain
the strData and then send it to the remote device to update the device status.

LuaTimerCallback

LuaTimerCallback ()

This script will be called when a timer expires. After a timer has been setup, this script will be called periodically. You
can make use of this script to perform value polling. You can also call XStopTimer function within the script to stop
the timer from triggering again.

Within your Lua script, in addition to standard Lua programming functionality, we also provide the following function
calls for communication and other functions. The supporting function calls can be classified into the following groups:

• TCP/UDP communication setup
• UI manipulation
• Timer manipulation
• Console log message for debugging

Note: In order for each of these function calls to access the proper Lua environment of the individual device instance,
each function call needs to provide the unique driver ID (which is provided in the Lua Initialization script call) as the
first argument to the function call.

XTCPServerSetup

serverId XTCPServerSetup (driverId, serverPort, idleTimeout)
driverId Id to identify the individual driver instance
serverPort Server port for the TCP server
idleTimerout Idle timeout value (in ms) for the server to disconnect idle connection
return serverId which is a unique ID for the server

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 19

This function call will setup a TCP server at the port specified. If setup is successful it will return a non-zero serverId.
This ID will be used in future scripts to identify the server being setup. The server being setup will wait for an
incoming TCP connection. (If the setup fails, it will return 0.)XTCPServerClose

Bool XTCPServerClose (driverId, serverId)
driverId Id to identify the individual driver instance
serverId Indicates which server to close
return True if successful, otherwise false.

This function will close a previously created TCP server.

XTCPServerReplyMessage

bool XTCPServerReplyMessage (driverId, serverId, clientId, sendData)
driverId Id to identify the individual driver instance
serverId Indicates which server to send message to
clientId Indicates which client connection to send message to
sendData String (binary) data to send to network
return True if successful, otherwise false.

This function will send the message to a TCP server connection indicated by the serverId and clientId.

XTCPClientSetup

clientId XTCPClientSetup (driverId, remoteIP, remotePort, idleTimeout)
driverId Id to identify the individual driver instance
remoteIP Remote device IP address to connect to
remotePort Remote TCP port to connect to
idleTimeout Indicate idle timeout (in ms) to disconnect the connection (0 - means no timeout)
return A unique clientId that you can use to send data to within the script.

This function call will setup a TCP client connection to a remote device with a specified IP and port. If idleTimeout is
set, the connection will be closed when idle for the time specified. Once the connection times out, you can simply
send another message to it and it will perform a re-connection to the remote server.

When this setup call is made it will not actually create the TCP connection to the remote until you send a message to
this client.

XTCPClientClose

bool XTCPClientClose (driverId, clientId)
driverId Id to identify the individual driver instance
serverId Indicate which server to close
return True if successful, otherwise false.

This function call will close a previously created UDP server.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 20

XTCPClientIsConnected

bool XTCPClientIsConnected (driverId, clientId)
driverId Id to identify the individual driver instance
clientId Client to check for connection
return True if the connection still active, otherwise false

This function call will check whether a client connection is currently connected. If it is not connected, you can re-
connect simply by sending a message to the client. The reason to provide such a check is to enable the ability to send
specific messages when a TPC client connection is formed. This is useful in the case where a TCP connection requires
a login.

XTCPClientSendMessage

bool XTCPClientSendMessage (driverId, clientId, sendData)
driverId Id to identify the individual driver instance
clientId Indicates which client connection to send message to
sendData String (binary) data to send to network
return True if successful, otherwise false.

This function call will send a message to a specific TCP client connection that has been previously setup. If the device
has not connected yet, this send message will connect to remote before sending the message.

XUDPServerSetup

serverId XUDPServerSetup (driverId, serverPort)
driverId Id to identify the individual driver instance
serverPort Server port for the UDP server
return serverId which is a unique ID for the server

This function call will setup a UDP server at the server port.

XUDPServerClose

bool XUDPServerClose (driverId, serverId)
driverId Id to identify the individual driver instance
serverId Indicate which server to close
return True if successful, otherwise false.

This function will close a previously created UDP server.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 21

XUDPClientSendMessage

bool XUDPClientSendMessage (driverId, remoteIP, remotePort, localPort, sendData)
driverId Id to identify the individual driver instance
remoteIP Remote device IP address to connect to
remotePort Remote TCP port to connect to
localPort Local port to use (0 – means O/S will choose a port for you)
sendData String (binary) data to send to network
return True if successful, otherwise false.

This function call will send message to a remote UDP server. As UDP is connectionless, it is not required to setup a
client before sending message to a remote UDP server.

XUIUpdateRequest

bool XUIUpdateRequest (driverId, objectName, UIdata)
driverId Id to identify the individual driver instance
objectName UI object ASCII name to updated. If more than one UI object has the same name,

all UI objects with that name will be updated
UIdata Date to update to UI objects.
return True if successful, otherwise false.

This function call will update the UI object identified by the objectName. There could be more than one UI object
with the same name. This call will update all objects with that name.

XStartTimer

Void XStartTimer (driverId, timeoutInterval)
driverId Id to identify the individual driver instance
timeout Interval Timeinterval in millisecond
return None.

This function call will start a periodic timer. When a timeout occurs, it will call the corresponding Lua script. You can
only setup a single timer in a Lua environment. If you run XStartTimer again, it will replace the previously setup
timeoutInterval.

XStopTimer

Void XStopTimer (driverId)
driverId Id to identify the individual driver instance
return None.

This function call will stop a previously setup timer.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 22

XConsoleLog

void XConsoleLog (driverId, message)
driverId Id to identify the individual driver instance
message String message send to console log
return None.

This function call will send the message to the console log. You can see the console log message during the
debugging session of the driver. During normal run time, this call has no effect.

User Interface Builder

Each driver is associated with its own user interface. Creating a driver user interface is similar to building a user
interface for an XTouch device. You can drag in faders, buttons, meters, etc. into the interface editor.

Each UI object you put into the interface can be named, and in the script, you can access this UI object by its name.

In addition, you can setup multiple pages and link these pages using page change buttons.

In the interface, you can name more than one object with same name. In this case any object value change in the UI
will trigger a UI update request event for the Lua event. If the Lua script decides to change the value of a named UI
object, all objects with same name will be updated simultaneously.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 23

DRIVER TESTING AND DEBUGGING

Once you have finished setting up the driver information, script body, and user interface, you are then ready to test
your driver. To test the driver, simply click the “Start Testing Mode” button on the middle top of the menu bar.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 24

The driver must be saved before testing can begin. To start testing, a dialog will be displayed to ask you to map to a
physical device by entering the target IP address as well as the related parameters for your testing session.

Once the information is entered and you click Ok, the driver will be ONLINE. All editing parameters will become read-
only, and a console log area will be displayed on top of the script editor. All console messages generated in the script
will be displayed in the log area. If you find the log to be too long, you can press the “Clear” button to clear the old
log.

In the script area, you can modify your script directly online. Pressing the “Apply Script” button will re-start the script
initialization. All opened connections will be closed and then re-opened according to the new initialization script.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 25

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 26

The control interfaces will also go into ONLINE controlling mode. You can change fader and button states and the
related script will be executed, and you can check the log from those scripts. If changes have been made from the
remote end, your Lua script can also drive the UI object state as well.

When you have finished with the testing session, press “Stop Testing Mode” to stop testing and go back to editing
mode. If you have modified the script during testing, a dialog will be displayed to ask you whether you want to save
the script modification or discard it.

DRIVER IMPORTING AND EXPORTING

Custom drivers can be exported by clicking the corresponding “Export” button. The export is an XML file containing
all information (including driver info, the script, and control interfaces). You can then share this file with others.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 27

For others to use the driver, they can click the “Import Custom Driver” button to import the driver to their Xilica
Designer. Once imported, the devices will automatically be listed in the Component Library.

Once a driver has been installed, you cannot re-install the same driver again. You need to delete the old one before
you can re-install it. If you try to re-install the same driver, a warning dialog will be displayed.

Note: For user-defined custom drivers, the following fields are used to define the driver’s identity:

• Driver Description
• Driver Manufacturer
• Author
• Creation Date

If any of these parameters change the driver will be considered a different driver.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 28

PROJECT FILES AND DRIVERS

If you receive project files containing user-defined Custom drivers, you will NOT be able to open the project file. A
dialog will be displayed indicating the specific information of the missing driver. You must contact the driver owner
and install the custom driver(s) before the project file can be opened.

During driver import, a different driver ID will be automatically assigned locally to your Xilica Designer installation.

 LUA PROGRAMMING GUIDE

2020, XILICA CORPORATION PAGE 29

For a project file that includes devices with Official drivers, Xilica Designer will confirm that these drivers have been
installed. If not, simply install the drivers Designer’s project editor. All Official drivers will be listed on the left-hand
side. Locate the driver and double click on it to install. Once installed, you will be able to open the project file.

